library(readxl)
library(openxlsx)
<- "docs/SummerMoon - TUIK - Issizlik Dataset.xlsx"
path
# getting data from sheets
<- openxlsx::getSheetNames(path)
sheets <- lapply(sheets, openxlsx::read.xlsx, xlsxFile=path)
data_frame
# assigning names to data frame
names(data_frame) <- sheets
# printing the data
#print (data_frame)
list2env(data_frame, envir = .GlobalEnv)
lapply(names(data_frame), function(x)
assign(x, data_frame[[x]], envir = .GlobalEnv)
)
2 TUIK Preprocessing
2.1 Importing excel files
We stored Tuik data in separate sheets in Excel, so firstly we read all sheets and store them separately in tables in R.
2.2 Dataframes
Here are our tables which we analyze later.
names(data_frame)
[1] "index" "Labour_force_by_household_pop"
[3] "Labour_force_status_by_reg" "Employed_rate_by_marital_status"
[5] "Unemployment_rate" "Youth_unemployment_rate"
[7] "Reasons_of_not_being_in_lab_for" "Perc_of_pop_by_mar_status"
[9] "Mean_age_of_mother_by_Statistic" "Births_by_mothers_age_edu_grp"
[11] "Crude_divorce_rate_by_provinces" "Births_of_mothers_by_reg_mar_st"
[13] "Mean_age_first_marriage_by_prvn" "Divorces_by_provinces"
[15] "Birth_by_prov_mother_dur_of_mar" "Pop_by_province_place_birth_sta"
[17] "Employment_by_occup_group"
2.3 Converting to RDS
Lastly, we convert all tables into RDS format and stored them in the ~/docs/tuik folder.
for (i in c(seq(1, length(names(data_frame)) ,1))) {
saveRDS(data_frame[[i]],file = paste0("docs/tuik/",names(data_frame)[i],'.rds'))
}