library(tidyverse)
library(nycflights13)
2 In Class Exercise 1
%>% glimpse() planes
Rows: 3,322
Columns: 9
$ tailnum <chr> "N10156", "N102UW", "N103US", "N104UW", "N10575", "N105UW…
$ year <int> 2004, 1998, 1999, 1999, 2002, 1999, 1999, 1999, 1999, 199…
$ type <chr> "Fixed wing multi engine", "Fixed wing multi engine", "Fi…
$ manufacturer <chr> "EMBRAER", "AIRBUS INDUSTRIE", "AIRBUS INDUSTRIE", "AIRBU…
$ model <chr> "EMB-145XR", "A320-214", "A320-214", "A320-214", "EMB-145…
$ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
$ seats <int> 55, 182, 182, 182, 55, 182, 182, 182, 182, 182, 55, 55, 5…
$ speed <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ engine <chr> "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turb…
2.1 The number of planes according to their manufacturers.
%>%
planes group_by(manufacturer) %>%
summarise(count=n()) %>%
arrange(manufacturer) %>%
print(n=35)
# A tibble: 35 × 2
manufacturer count
<chr> <int>
1 AGUSTA SPA 1
2 AIRBUS 336
3 AIRBUS INDUSTRIE 400
4 AMERICAN AIRCRAFT INC 2
5 AVIAT AIRCRAFT INC 1
6 AVIONS MARCEL DASSAULT 1
7 BARKER JACK L 1
8 BEECH 2
9 BELL 2
10 BOEING 1630
11 BOMBARDIER INC 368
12 CANADAIR 9
13 CANADAIR LTD 1
14 CESSNA 9
15 CIRRUS DESIGN CORP 1
16 DEHAVILLAND 1
17 DOUGLAS 1
18 EMBRAER 299
19 FRIEDEMANN JON 1
20 GULFSTREAM AEROSPACE 2
21 HURLEY JAMES LARRY 1
22 JOHN G HESS 1
23 KILDALL GARY 1
24 LAMBERT RICHARD 1
25 LEARJET INC 1
26 LEBLANC GLENN T 1
27 MARZ BARRY 1
28 MCDONNELL DOUGLAS 120
29 MCDONNELL DOUGLAS AIRCRAFT CO 103
30 MCDONNELL DOUGLAS CORPORATION 14
31 PAIR MIKE E 1
32 PIPER 5
33 ROBINSON HELICOPTER CO 1
34 SIKORSKY 1
35 STEWART MACO 2
2.2 Max engine numbers group by years.
%>%
planes group_by(year) %>%
filter(duplicated(year)) %>%
arrange(year) %>%
mutate("max_engine_num"=max(engines)) %>%
summarise(max_engine_num=paste0(unique(max_engine_num),collapse=',')) %>%
print(n=39)
# A tibble: 39 × 2
year max_engine_num
<int> <chr>
1 1959 1
2 1963 1
3 1975 2
4 1976 2
5 1977 2
6 1978 2
7 1979 2
8 1980 2
9 1984 2
10 1985 2
11 1986 3
12 1987 2
13 1988 2
14 1989 2
15 1990 4
16 1991 2
17 1992 2
18 1993 2
19 1994 2
20 1995 2
21 1996 2
22 1997 2
23 1998 2
24 1999 2
25 2000 2
26 2001 2
27 2002 2
28 2003 2
29 2004 3
30 2005 2
31 2006 2
32 2007 2
33 2008 2
34 2009 2
35 2010 2
36 2011 2
37 2012 2
38 2013 2
39 NA 4
2.3 Total plane count per engines.
%>%
planes group_by(engines) %>%
mutate("average_engine_nums"=mean(engines, 1)) %>%
count(average_engine_nums)
# A tibble: 4 × 3
# Groups: engines [4]
engines average_engine_nums n
<int> <dbl> <int>
1 1 1 27
2 2 2 3288
3 3 3 3
4 4 4 4