library(tidyverse)
library(nycflights13)
2 In Class Exercise 1
##In class exercise here..
First of all we examine the data as how many rows and coloumns we have.
glimpse(planes)
Rows: 3,322
Columns: 9
$ tailnum <chr> "N10156", "N102UW", "N103US", "N104UW", "N10575", "N105UW…
$ year <int> 2004, 1998, 1999, 1999, 2002, 1999, 1999, 1999, 1999, 199…
$ type <chr> "Fixed wing multi engine", "Fixed wing multi engine", "Fi…
$ manufacturer <chr> "EMBRAER", "AIRBUS INDUSTRIE", "AIRBUS INDUSTRIE", "AIRBU…
$ model <chr> "EMB-145XR", "A320-214", "A320-214", "A320-214", "EMB-145…
$ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
$ seats <int> 55, 182, 182, 182, 55, 182, 182, 182, 182, 182, 55, 55, 5…
$ speed <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ engine <chr> "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turb…
##In “plane” dataset, there is a information about construction information and planes information.
##calculate seats in Embraer by count of planes.
%>%
planes filter(manufacturer == "EMBRAER") %>%
group_by(seats) %>%
summarise(planes_counts = n()) %>%
arrange(desc(planes_counts))
# A tibble: 2 × 2
seats planes_counts
<int> <int>
1 55 219
2 20 80
##calculate number of planes according to their manufacturer.
%>%
planes group_by(manufacturer) %>%
summarise(count=n()) %>%
arrange(manufacturer) %>%
print(n=35)
# A tibble: 35 × 2
manufacturer count
<chr> <int>
1 AGUSTA SPA 1
2 AIRBUS 336
3 AIRBUS INDUSTRIE 400
4 AMERICAN AIRCRAFT INC 2
5 AVIAT AIRCRAFT INC 1
6 AVIONS MARCEL DASSAULT 1
7 BARKER JACK L 1
8 BEECH 2
9 BELL 2
10 BOEING 1630
11 BOMBARDIER INC 368
12 CANADAIR 9
13 CANADAIR LTD 1
14 CESSNA 9
15 CIRRUS DESIGN CORP 1
16 DEHAVILLAND 1
17 DOUGLAS 1
18 EMBRAER 299
19 FRIEDEMANN JON 1
20 GULFSTREAM AEROSPACE 2
21 HURLEY JAMES LARRY 1
22 JOHN G HESS 1
23 KILDALL GARY 1
24 LAMBERT RICHARD 1
25 LEARJET INC 1
26 LEBLANC GLENN T 1
27 MARZ BARRY 1
28 MCDONNELL DOUGLAS 120
29 MCDONNELL DOUGLAS AIRCRAFT CO 103
30 MCDONNELL DOUGLAS CORPORATION 14
31 PAIR MIKE E 1
32 PIPER 5
33 ROBINSON HELICOPTER CO 1
34 SIKORSKY 1
35 STEWART MACO 2