library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.5 v stringr 1.4.0
## v tidyr 1.1.4 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidyr)
library(readr)
balik_hal_fiyatlari <- read.csv(file = "C:/Users/kbkerimoglu/balik_hal_fiyatlari.csv",
stringsAsFactors = FALSE, header = TRUE,sep = ";", encoding="UTF-8")
Although average percentage change prices are close to each other, fish prices are most volatile for MERCAN(BÜYÜKBOY) and BARBUN(TEKİR). Moreover, when we examine according to seasons price, “SONBAHAR” price is almost 50% higher than the “KIS” price.
balik_hal_fiyatlari %>% filter(MAL_TURU == 'BALIK') %>%
mutate(DAILY_DF = AZAMI_UCRET - ASGARI_UCRET) %>% group_by(MAL_ADI) %>%
summarise(DAILY_DF_AVG = mean(DAILY_DF)) %>%
arrange(desc(DAILY_DF_AVG)) %>% head(5)
## # A tibble: 5 x 2
## MAL_ADI DAILY_DF_AVG
## <chr> <dbl>
## 1 MERCAN (BÜYÜKBOY) 193.
## 2 İSTAKOZ (DENİZ) 175.
## 3 KARİDES (DENİZ) 170.
## 4 DIL 146.
## 5 BARBUN (TEKİR) 143.
plot_vis <- balik_hal_fiyatlari %>% filter(MAL_TURU == 'BALIK') %>%
mutate(DAILY_DF = AZAMI_UCRET - ASGARI_UCRET) %>% group_by(MAL_ADI) %>%
summarise(DAILY_DF_AVG = mean(DAILY_DF)) %>%
arrange(desc(DAILY_DF_AVG)) %>% head(5)
ggplot(plot_vis, aes(x = MAL_ADI, y = DAILY_DF_AVG, fill=MAL_ADI)) +
geom_bar(stat = "identity")
balik_hal_fiyatlari %>% filter(MAL_TURU == 'BALIK') %>%
mutate(DAILY_DF = AZAMI_UCRET - ASGARI_UCRET, DAILY_AVG = (AZAMI_UCRET + ASGARI_UCRET) / 2)%>%
mutate(DAILY_AVG_PERCENTAGE = (DAILY_DF /2) / DAILY_AVG*100) %>% group_by(MAL_ADI) %>%
summarise(MEAN_AVG_PERCENTAGE = mean(DAILY_AVG_PERCENTAGE), MEAN_DAILY_DF = mean(DAILY_DF)) %>%
arrange(desc(MEAN_AVG_PERCENTAGE)) %>% head(5)
## # A tibble: 5 x 3
## MAL_ADI MEAN_AVG_PERCENTAGE MEAN_DAILY_DF
## <chr> <dbl> <dbl>
## 1 MERCAN (BÜYÜKBOY) 86.8 193.
## 2 KUPEZ (DENİZ) 84.9 19.4
## 3 LİDAKİ (DENİZ) 79.5 57.6
## 4 KIRLANGIÇ (DENİZ) 78.8 90.2
## 5 BARBUN (TEKİR) 78.3 143.
plot_perc <- balik_hal_fiyatlari %>% filter(MAL_TURU == 'BALIK') %>%
mutate(DAILY_DF = AZAMI_UCRET - ASGARI_UCRET, DAILY_AVG = (AZAMI_UCRET + ASGARI_UCRET) / 2)%>%
mutate(DAILY_AVG_PERCENTAGE = (DAILY_DF /2) / DAILY_AVG*100) %>% group_by(MAL_ADI) %>%
summarise(MEAN_AVG_PERCENTAGE = mean(DAILY_AVG_PERCENTAGE), MEAN_DAILY_DF = mean(DAILY_DF)) %>%
arrange(desc(MEAN_AVG_PERCENTAGE)) %>% head(5)
ggplot(plot_perc, aes(x = MEAN_AVG_PERCENTAGE, y = MEAN_DAILY_DF, fill = MAL_ADI)) + geom_bar(stat = 'identity', alpha = 0.5, size = 5)
plot_seasons <- balik_hal_fiyatlari %>% mutate(AY=lubridate::month(TARIH)) %>%
mutate(TARIH_MEVSIM=case_when(AY<=12 & AY>=9 ~"SONBAHAR", AY <=9 & AY >=6 ~ "YAZ", AY<=6 & AY>=3 ~"ILKBAHAR", AY<3 ~ "KIS"), DAILY_DF = AZAMI_UCRET- ASGARI_UCRET)%>%
group_by(TARIH_MEVSIM)%>% summarise(MEAN_DAILY_DF=mean(DAILY_DF))
plot_seasons
## # A tibble: 4 x 2
## TARIH_MEVSIM MEAN_DAILY_DF
## <chr> <dbl>
## 1 ILKBAHAR 30.6
## 2 KIS 27.9
## 3 SONBAHAR 42.9
## 4 YAZ 38.9
ggplot(plot_seasons, aes(x = reorder(TARIH_MEVSIM,MEAN_DAILY_DF), y = MEAN_DAILY_DF, fill = TARIH_MEVSIM)) +
geom_bar(stat = 'identity')