raw_df <- read_excel("/Users/NERIMAN.GURSOY/Desktop/R data/EVDS_istanbul_property_data.xlsx", n_max=100)
glimpse((raw_df))
## Rows: 100
## Columns: 9
## $ Date <chr> "2010-01", "2010-02", "2010-03", "2010-04", "201...
## $ TotalSales <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ MortgageSales <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ FirstHandSales <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ SecondHandSales <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ ForeignSales <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ NewHousePriceIndex <dbl> 35.9, 36.6, 37.4, 38.0, 38.0, 37.6, 37.3, 38.1, ...
## $ HouseLevel <dbl> 36.0, 36.2, 36.5, 36.9, 37.1, 37.0, 37.2, 37.3, ...
## $ HouseUnitPrice <dbl> 1414.9, 1420.1, 1427.9, 1442.7, 1449.0, 1445.4, ...
plot_df <- raw_df %>% filter(Date>=2016) %>%select(Date, TotalSales,HouseLevel)
ggplot(plot_df, aes(x=Date, y=TotalSales, color=HouseLevel)) + geom_point() + theme(axis.text.x = element_text(angle = 90), legend.position = "none")+ ggtitle("Istanbul House Prices")
House prices of Istanbul between 2016 and 2020 shows that : Maximum total sales is 25000, in December 2016 and the minimum sales in July 2016. Also , we can say that compared to months there is no big differences in total sales.