Preparetions
library(readxl)
property_data<-read_xlsx("/home/idil/İndirilenler/EVDS_istanbul_property_data.xlsx",n_max = 130)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.4 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
new_data<-property_data%>%
select(date='Tarih',total_sales='TP AKONUTSAT1 T40',mortgage_sales='TP AKONUTSAT2 T40',first_hand_sales='TP AKONUTSAT3 T40',
second_hand_sales='TP AKONUTSAT4 T40',foreign_sales='TP DISKONSAT ISTANBUL',
price_index='TP HEDONIKYKFE IST',tr10='TP HKFE02',unit_price='TP TCBF02 ISTANBUL')
Finding the maximum sales after November 2020
new_data%>%
filter(date>2019-12)%>%
arrange(desc(new_data))%>%
top_n(1,total_sales)
## # A tibble: 1 x 9
## date total_sales mortgage_sales first_hand_sales second_hand_sal…
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 2019… 40317 10137 14772 25545
## # … with 4 more variables: foreign_sales <dbl>, price_index <dbl>, tr10 <dbl>,
## # unit_price <dbl>
Price index throught time
new_data%>%
filter(date>2018-12)%>%
group_by(price_index)%>%
arrange(desc(date))
## # A tibble: 129 x 9
## # Groups: price_index [118]
## date total_sales mortgage_sales first_hand_sales second_hand_sal…
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 2020… 25399 7527 7099 18300
## 2 2020… 30292 15367 8103 22189
## 3 2020… 39432 24000 10429 29003
## 4 2020… 28799 14767 8253 20546
## 5 2020… 7640 2570 2546 5094
## 6 2020… 6113 2451 2022 4091
## 7 2020… 19846 7843 6439 13407
## 8 2020… 22662 8281 7326 15336
## 9 2020… 21251 7615 6599 14652
## 10 2019… 40317 10137 14772 25545
## # … with 119 more rows, and 4 more variables: foreign_sales <dbl>,
## # price_index <dbl>, tr10 <dbl>, unit_price <dbl>
library("ggplot2")
plot1<-ggplot(new_data, aes(x=foreign_sales,y=total_sales))
print(plot1)