raw_df <- read_xlsx("C:/Users/ETR04585/Desktop/BDA/Courses/1st Semester/Data Analytics Essentials with R/Assingment 2_dplr_ggplot/EVDS_istanbul_property_data.xlsx", n_max = 130)

Let’s preview the data

glimpse(raw_df)
## Rows: 129
## Columns: 9
## $ Tarih                   <chr> "2010-01", "2010-02", "2010-03", "2010-04",...
## $ `TP AKONUTSAT1 T40`     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ `TP AKONUTSAT2 T40`     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ `TP AKONUTSAT3 T40`     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ `TP AKONUTSAT4 T40`     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ `TP DISKONSAT ISTANBUL` <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ `TP HEDONIKYKFE IST`    <dbl> 35.9, 36.6, 37.4, 38.0, 38.0, 37.6, 37.3, 3...
## $ `TP HKFE02`             <dbl> 36.0, 36.2, 36.5, 36.9, 37.1, 37.0, 37.2, 3...
## $ `TP TCBF02 ISTANBUL`    <dbl> 1414.9, 1420.1, 1427.9, 1442.7, 1449.0, 144...
raw_df$Tarih<-paste0(raw_df$Tarih,as.character("-01"))

raw_df$Tarih<-as.Date(raw_df$Tarih, format="%Y-%m-%d")

I changed the names of columns with more understandable names.

adj_df <- rename(raw_df, "totalsales" = "TP AKONUTSAT1 T40",
                 "mortgaged" = "TP AKONUTSAT2 T40",
                 "first" = "TP AKONUTSAT3 T40",
                 "second" = "TP AKONUTSAT4 T40",
                 "foreigner" = "TP DISKONSAT ISTANBUL",
                 "pi_new" = "TP HEDONIKYKFE IST",
                 "pi_old" = "TP HKFE02",
                 "tl_m2" = "TP TCBF02 ISTANBUL",
                 "years" = "Tarih")
glimpse(adj_df)
## Rows: 129
## Columns: 9
## $ years      <date> 2010-01-01, 2010-02-01, 2010-03-01, 2010-04-01, 2010-05...
## $ totalsales <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ mortgaged  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ first      <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ second     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ foreigner  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ pi_new     <dbl> 35.9, 36.6, 37.4, 38.0, 38.0, 37.6, 37.3, 38.1, 38.8, 39...
## $ pi_old     <dbl> 36.0, 36.2, 36.5, 36.9, 37.1, 37.0, 37.2, 37.3, 37.7, 38...
## $ tl_m2      <dbl> 1414.9, 1420.1, 1427.9, 1442.7, 1449.0, 1445.4, 1452.6, ...
adj_df %>%
  filter(year(years) > 2012)
## # A tibble: 93 x 9
##    years      totalsales mortgaged first second foreigner pi_new pi_old tl_m2
##    <date>          <dbl>     <dbl> <dbl>  <dbl>     <dbl>  <dbl>  <dbl> <dbl>
##  1 2013-01-01      18235      8423  8298   9937       138   49.5   47.8 2064.
##  2 2013-02-01      18971      8836  8277  10694       120   50.4   48.8 2114.
##  3 2013-03-01      21570     10164  9542  12028       198   51.1   49.9 2158.
##  4 2013-04-01      20791      9726  8751  12040       209   51.6   50.9 2186.
##  5 2013-05-01      22030     10805  9371  12659       188   52.2   51.6 2218.
##  6 2013-06-01      19357      9762  8160  11197       155   53     52.4 2263.
##  7 2013-07-01      20668     10071  9034  11634       192   53.8   52.9 2300.
##  8 2013-08-01      14930      6834  6960   7970       170   54.8   53.5 2320.
##  9 2013-09-01      18514      8153  8128  10386       156   55.6   54.3 2346 
## 10 2013-10-01      14866      6268  6737   8129       181   56.3   55   2394.
## # ... with 83 more rows

Mortgaged Sales

adj_df %>%
  filter(year(years) > 2013) %>%
  ggplot(aes(years, mortgaged)) + geom_line() + labs(x="Years", y="Mortgaged Sale", title = "Mortgaged Sale Respected by Years") 

Total Sales Change Compared to The Previous Year

adj_df %>%
  filter(year(years) > 2013) %>%
  mutate(difference = totalsales - lag(totalsales)) %>%
  ggplot(aes(years, difference)) + geom_line() + labs(x="Years", y="Total Sales Change", title = "Total Sales Change Compared to The Previous Year") 
## Warning: Removed 1 row(s) containing missing values (geom_path).