There are three different data sources in this analysis. We have improved raw data and omitted unnecessary fields. Below you can see the format of three different data sources which includes, students information with university facts, exchange students facts and university entrance exam figures.
5 Year of Academy Year Data: This raw data includes 909 rows and 15 variables related to Turkey Council of High Education between 2014-2015 and 2018-2019 statistics related to universites and their students. There are currently 207 universities available in Turkey in 2019 year. Our database includes 242 universities most of them are closed after 2015-2016 education year.
tmp=tempfile(fileext=".xlsx")
download.file("https://github.com/pjournal/mef03g-polatalemd-r/blob/master/university_statistics_2019-2014.xlsx?raw=true",destfile=tmp,mode='wb')
raw_data=readxl::read_excel(tmp)
file.remove(tmp)
head(raw_data, 10)
## # A tibble: 10 x 15
## name_of_univers~ year_of_educati~ type_of_univers~ city onlisans_male
## <chr> <chr> <chr> <chr> <dbl>
## 1 ABANT IZZET BAY~ 2018-2017 DEVLET BOLU 6230
## 2 ABANT IZZET BAY~ 2017-2016 DEVLET BOLU 6222
## 3 ABANT IZZET BAY~ 2016-2015 DEVLET BOLU 5649
## 4 ABANT IZZET BAY~ 2015-2014 DEVLET BOLU 4269
## 5 ABDULLAH GUL UN~ 2019-2018 DEVLET KAYS~ 0
## 6 ABDULLAH GUL UN~ 2018-2017 DEVLET KAYS~ 0
## 7 ABDULLAH GUL UN~ 2017-2016 DEVLET KAYS~ 0
## 8 ABDULLAH GUL UN~ 2016-2015 DEVLET KAYS~ 0
## 9 ABDULLAH GUL UN~ 2015-2014 DEVLET KAYS~ 0
## 10 ACIBADEM MEHMET~ 2019-2018 VAKIF ISTA~ 514
## # ... with 10 more variables: onlisans_female <dbl>, lisans_male <dbl>,
## # lisans_female <dbl>, master_male <dbl>, master_female <dbl>,
## # doctorate_male <dbl>, doctorate_female <dbl>, total_male <dbl>,
## # total_female <dbl>, total_total <dbl>
There are 34225 students that participate in exchange programs from Turkey last five year. This data includes 816 rows 22 variables. Marmara University is the most welcoming one that accepts incoming students where the outgoings are the lowest compared to ratio of income and outgoing students.
tmp=tempfile(fileext=".xlsx")
download.file("https://github.com/pjournal/mef03g-polatalemd-r/blob/master/rawdata_exchange_students.xlsx?raw=true",destfile=tmp,mode='wb')
rawdata_exchange_students=readxl::read_excel(tmp)
file.remove(tmp)
head(rawdata_exchange_students, 10)
## # A tibble: 10 x 25
## name_of_univers~ type_of_univers~ city year_of_educati~
## <chr> <chr> <chr> <chr>
## 1 ACIBADEM MEHMET~ VAKIF ISTA~ 2018_2019
## 2 ADANA ALPARSLAN~ DEVLET ADANA 2018_2019
## 3 ADANA BILIM VE ~ DEVLET ADANA 2018_2019
## 4 ADIYAMAN UNIVER~ DEVLET ADIY~ 2018_2019
## 5 AFYON KOCATEPE ~ DEVLET AFYO~ 2018_2019
## 6 AFYONKARAHISAR ~ DEVLET AFYO~ 2018_2019
## 7 AGRI IBRAHIM CE~ DEVLET AGRI 2018_2019
## 8 AKDENIZ UNIVERS~ DEVLET ANTA~ 2018_2019
## 9 AKSARAY UNIVERS~ DEVLET AKSA~ 2018_2019
## 10 ALANYA ALAADDIN~ DEVLET ANTA~ 2018_2019
## # ... with 21 more variables: farabigiden_male <dbl>,
## # farabigiden_female <dbl>, farabigiden_toplam <dbl>,
## # farabigelen_male <dbl>, farabigelen_female <dbl>,
## # farabigelen_total <dbl>, mevlanagiden_male <dbl>,
## # mevlanagiden_female <dbl>, mevlanagiden_total <dbl>,
## # mevlanagelen_male <dbl>, mevlanagelen_female <dbl>,
## # mevlanagelen_total <dbl>, erasmusgiden_male <dbl>,
## # erasmusgiden_female <dbl>, erasmusgiden_total <dbl>,
## # erasmusgelen_male <dbl>, erasmusgelen_female <dbl>,
## # erasmusgelen_total <dbl>, male_total <dbl>, female_total <dbl>,
## # total_total <dbl>
library(dplyr)
library(ggplot2)
most_student_gain <- rawdata_exchange_students %>% transmute(name_of_university, year_of_education,
total_giden = farabigiden_toplam + mevlanagiden_total + erasmusgiden_total,
total_gelen = farabigelen_total + mevlanagelen_total + erasmusgelen_total,
change_of_studentnum = total_gelen - total_giden) %>%
select(name_of_university, total_gelen, total_giden, change_of_studentnum)%>%
group_by(name_of_university) %>% transmute(total_gelen = sum(total_gelen), total_giden=sum(total_giden),
change_of_studentnum=sum(change_of_studentnum)) %>% distinct() %>%
arrange(desc(change_of_studentnum)) %>% filter(change_of_studentnum>1000)
most_student_gain %>% ggplot(data=., aes(x=name_of_university, y=change_of_studentnum, fill=name_of_university)) +
geom_bar(stat="identity", position=position_dodge())+ aes(x = reorder(name_of_university, -change_of_studentnum), y = change_of_studentnum) +
labs(x = "2014-2019",y= "Change of Student Number", title = "Number of Student Changes (in all time)", fill= "Name of School") +
theme_minimal() + theme(axis.text.x = element_text(angle = 15, hjust = 0.6))
There are 135 observations and 18 variables.
This data enables us to oversee facts related to student admission exam trend in Turkey over 5 year data. with some fractions below without limitation: student with highest education before admission, student whether studied in a university before, students’ with background of types of schools
tmp <- tempfile(fileext = ".xlsx")
download.file("https://github.com/pjournal/mef03g-polatalemd-r/blob/master/2015-2019_YKS_BASVURAN_YERLESEN_.xlsx?raw=true",destfile = tmp,mode = 'wb')
YKS_BASVURAN_YERLESEN <- readxl::read_excel(tmp ,col_names = TRUE)
file.remove(tmp)
colnames(YKS_BASVURAN_YERLESEN) <- c("okul_turu","yil","son_sinif_duzeyinde_basvuran",
"son_sinif_duzeyinde_yerlesen_lisans","son_sinif_duzeyinde_yerlesen_onlisans","son_sinif_duzeyinde_yerlesen_ao",
"mezun_daha_once_yerlesmemis_basvuran","mezun_daha_once_yerlesmemis_yerlesen_lisans","mezun_daha_once_yerlesmemis_yerlesen_onlisans","mezun_daha_once_yerlesmemis_yerlesen_ao",
"bir_yuksek_ogretim_kurumu_bitirmis_basvuran","bir_yuksek_ogretim_kurumu_bitirmis_yerlesen_lisans","bir_yuksek_ogretim_kurumu_bitirmis_yerlesen_onlisans","bir_yuksek_ogretim_kurumu_bitirmis_yerlesen_ao",
"daha_once_yerlesmis_basvuran","daha_once_yerlesmis_yerlesen_lisans","daha_once_yerlesmis_yerlesen_onlisans","daha_once_yerlesmis_yerlesen_ao")
head(YKS_BASVURAN_YERLESEN, 10)
## # A tibble: 10 x 18
## okul_turu yil son_sinif_duzey~ son_sinif_duzey~ son_sinif_duzey~
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 LISE (RE~ 2015 245655 50218 34831
## 2 OZEL LISE 2015 1607 566 215
## 3 ANADOLU ~ 2015 163202 92723 9206
## 4 YABANCI ~ 2015 29748 19185 1345
## 5 FEN LISE~ 2015 9915 6270 35
## 6 OZEL FEN~ 2015 3563 2805 14
## 7 ASKERI L~ 2015 22 5 0
## 8 AKSAM LI~ 2015 0 0 0
## 9 OZEL AKS~ 2015 414 33 78
## 10 LISE , O~ 2015 0 0 0
## # ... with 13 more variables: son_sinif_duzeyinde_yerlesen_ao <dbl>,
## # mezun_daha_once_yerlesmemis_basvuran <dbl>,
## # mezun_daha_once_yerlesmemis_yerlesen_lisans <dbl>,
## # mezun_daha_once_yerlesmemis_yerlesen_onlisans <dbl>,
## # mezun_daha_once_yerlesmemis_yerlesen_ao <dbl>,
## # bir_yuksek_ogretim_kurumu_bitirmis_basvuran <dbl>,
## # bir_yuksek_ogretim_kurumu_bitirmis_yerlesen_lisans <dbl>,
## # bir_yuksek_ogretim_kurumu_bitirmis_yerlesen_onlisans <dbl>,
## # bir_yuksek_ogretim_kurumu_bitirmis_yerlesen_ao <dbl>,
## # daha_once_yerlesmis_basvuran <dbl>,
## # daha_once_yerlesmis_yerlesen_lisans <dbl>,
## # daha_once_yerlesmis_yerlesen_onlisans <dbl>,
## # daha_once_yerlesmis_yerlesen_ao <dbl>
YKS_BASVURAN_YERLESEN %>% group_by(yil) %>%
summarise(total_basvuran_son_sinif = sum(son_sinif_duzeyinde_basvuran),total_yerlesen_son_sinif = sum(son_sinif_duzeyinde_yerlesen_lisans)+sum(son_sinif_duzeyinde_yerlesen_onlisans)+sum(son_sinif_duzeyinde_yerlesen_ao))