# Temporary file for "Planning"
planning_temp=tempfile(fileext=".xlsx")
# Temporary file for "Production"
production_temp=tempfile(fileext=".xlsx")
# Temporary file for "Consumption"
consumption_temp=tempfile(fileext=".xlsx")
# Downloading file from repository to the "Planning" temp
download.file("https://raw.githubusercontent.com/pjournal/mef03g-Kar-R-sizlar/master/4-year-planning.csv?raw=true",destfile=planning_temp,mode='wb')
# Downloading file from repository to the "Production" temp
download.file("https://raw.githubusercontent.com/pjournal/mef03g-Kar-R-sizlar/master/4-year-production.csv?raw=true",destfile=production_temp,mode='wb')
# Downloading file from repository to the "Consumption" temp
download.file("https://raw.githubusercontent.com/pjournal/mef03g-Kar-R-sizlar/master/4-year-consumption.csv?raw=true",destfile=consumption_temp,mode='wb')
# Reading the csv files.
planning_raw_data=read.csv(planning_temp,skip=1)
production_raw_data=read.csv(production_temp,skip=1)
consumption_raw_data=read.csv(consumption_temp,skip=1)
# Removing the temp files
file.remove(planning_temp)
## [1] TRUE
file.remove(production_temp)
## [1] TRUE
file.remove(consumption_temp)
## [1] TRUE
# Proper Column Names
colnames(planning_raw_data) <- c('tarih', 'saat', 'toplam_mwh', 'dogal_gaz', 'ruzgar', 'linyit', 'tas_komur', 'ithal_komur', 'fuel_oil', 'jeotermal', 'barajli', 'nafta', 'biyokutle', 'akarsu', 'diger')
# Proper Data Format
planning_raw_data[,3:15] <- as.data.frame(lapply(planning_raw_data[,3:15], function(x) as.numeric(gsub(",", ".", gsub("\\.", "", x)))))
planning_raw_data$tarih <-as.character(planning_raw_data$tarih)
planning_raw_data$saat <-as.character(planning_raw_data$saat)
head(planning_raw_data, 10)
## tarih saat toplam_mwh dogal_gaz ruzgar linyit tas_komur
## 1 01.01.2016 01:00 18735.09 5471.14 168.48 4139.53 736
## 2 01.01.2016 02:00 17662.05 5182.14 168.44 4139.53 736
## 3 01.01.2016 03:00 17059.91 5146.13 159.71 4139.53 736
## 4 01.01.2016 04:00 16903.33 4990.13 149.83 4139.53 736
## 5 01.01.2016 05:00 16845.48 4941.13 138.38 4139.53 736
## 6 01.01.2016 06:00 17001.33 5116.08 120.18 4139.53 736
## 7 01.01.2016 07:00 16740.74 4993.23 109.84 4139.53 594
## 8 01.01.2016 08:00 17864.68 5643.54 101.52 4139.53 594
## 9 01.01.2016 09:00 19420.21 6237.16 95.73 4139.53 594
## 10 01.01.2016 10:00 20912.93 7964.49 90.42 4139.53 594
## ithal_komur fuel_oil jeotermal barajli nafta biyokutle akarsu diger
## 1 4587 115 104.1 3166.0 5 0 122.84 120
## 2 4470 115 104.1 2499.0 5 0 122.84 120
## 3 4470 115 104.1 1943.0 5 0 121.44 120
## 4 4470 115 104.1 1943.0 5 0 130.74 120
## 5 4470 115 104.1 1943.0 5 0 133.34 120
## 6 4470 115 104.1 1943.0 5 0 132.44 120
## 7 4470 115 104.1 1951.5 5 0 138.54 120
## 8 4470 115 104.1 2428.5 5 0 143.49 120
## 9 4612 115 104.0 3183.5 5 0 214.29 120
## 10 4612 115 101.5 2966.5 5 0 204.49 120
# Defining Column Names
colnames(production_raw_data) <- c('tarih', 'saat', 'toplam_mwh', 'dogal_gaz', 'barajli', 'linyit', 'akarsu', 'ithal_komur', 'ruzgar', 'gunes', 'fuel_oil', 'jeotermal', 'asfaltit_komur', 'tas_komur', 'biyokutle', 'nafta', 'lng', 'uluslararasi')
# Proper Data Format
production_raw_data[,3:18] <- as.data.frame(lapply(production_raw_data[,3:18], function(x) as.numeric(gsub(",", ".", gsub("\\.", "", x)))))
production_raw_data$tarih <-as.character(production_raw_data$tarih)
production_raw_data$saat <-as.character(production_raw_data$saat)
head(production_raw_data, 10)
## tarih saat toplam_mwh dogal_gaz barajli linyit akarsu
## 1 01.01.2016 01:00 24491.99 6430.37 3604.49 4997.36 546.70
## 2 01.01.2016 02:00 23109.42 5814.91 2865.77 5018.45 559.95
## 3 01.01.2016 03:00 22037.52 5668.09 2156.75 4984.45 551.79
## 4 01.01.2016 04:00 21527.40 5811.11 1665.71 4942.55 521.65
## 5 01.01.2016 05:00 21560.19 5899.45 1809.77 4949.23 591.53
## 6 01.01.2016 06:00 21792.83 6009.46 2152.58 4883.43 575.70
## 7 01.01.2016 07:00 21354.45 6034.40 1726.42 4866.64 585.93
## 8 01.01.2016 08:00 22468.05 6464.52 2664.15 4691.56 702.13
## 9 01.01.2016 09:00 24627.01 6897.42 3905.58 4759.37 1081.65
## 10 01.01.2016 10:00 26689.69 8592.73 4273.13 4830.44 1191.11
## ithal_komur ruzgar gunes fuel_oil jeotermal asfaltit_komur tas_komur
## 1 5269.60 2277.69 0 174.3 485.05 92.73 451.5
## 2 5165.70 2278.95 0 176.1 485.97 128.06 455.5
## 3 5148.64 2123.17 0 175.1 479.14 134.68 455.5
## 4 5123.66 2057.80 0 177.2 466.16 136.89 462.5
## 5 4917.75 1987.09 0 178.0 478.42 134.68 451.5
## 6 4981.60 1883.21 0 192.1 479.96 4.41 466.5
## 7 5129.63 1722.24 0 190.6 473.14 0.00 464.5
## 8 5156.67 1514.98 0 191.4 463.26 0.00 464.5
## 9 5284.62 1427.86 0 189.1 455.94 8.83 459.5
## 10 5290.62 1196.47 0 193.1 449.04 50.78 462.5
## biyokutle nafta lng uluslararasi
## 1 162.20 0 0 0
## 2 160.06 0 0 0
## 3 160.21 0 0 0
## 4 162.17 0 0 0
## 5 162.77 0 0 0
## 6 163.88 0 0 0
## 7 160.95 0 0 0
## 8 154.88 0 0 0
## 9 157.14 0 0 0
## 10 159.77 0 0 0
# Defining Column Names
colnames(consumption_raw_data) <- c('tarih', 'saat', 'tuketim_miktari_mwh')
# Proper Data Format
consumption_raw_data <- cbind(consumption_raw_data, consumption_raw_data)
consumption_raw_data[,3:6] <- as.data.frame(lapply(consumption_raw_data[,3:6], function(x) as.numeric(gsub(",", ".", gsub("\\.", "", x)))))
## Warning in FUN(X[[i]], ...): NAs introduced by coercion
consumption_raw_data <- consumption_raw_data[, 1:3]
consumption_raw_data$tarih <-as.character(consumption_raw_data$tarih)
consumption_raw_data$saat <-as.character(consumption_raw_data$saat)
head(consumption_raw_data, 10)
## tarih saat tuketim_miktari_mwh
## 1 01.01.2016 01:00 24991.82
## 2 01.01.2016 02:00 23532.61
## 3 01.01.2016 03:00 22464.78
## 4 01.01.2016 04:00 22002.91
## 5 01.01.2016 05:00 21957.08
## 6 01.01.2016 06:00 22203.54
## 7 01.01.2016 07:00 21844.16
## 8 01.01.2016 08:00 23094.73
## 9 01.01.2016 09:00 25202.27
## 10 01.01.2016 10:00 27224.96
# Creating RDS files
saveRDS(planning_raw_data, file = "/Users/m2lmacbook1/Desktop/Phase 2 - Data Explanations/planning.rds")
saveRDS(production_raw_data, file = "/Users/m2lmacbook1/Desktop/Phase 2 - Data Explanations/production.rds")
saveRDS(consumption_raw_data, file = "/Users/m2lmacbook1/Desktop/Phase 2 - Data Explanations/consumption.rds")
# Links to download RDS files from Group PJ
# * [Planning](https://github.com/pjournal/mef03g-Kar-R-sizlar/blob/master/planning.rds)
# * [Production](https://github.com/pjournal/mef03g-Kar-R-sizlar/blob/master/production.rds)
# * [Consumpiton](https://github.com/pjournal/mef03g-Kar-R-sizlar/blob/master/consumption.rds)
# Reading the RDS files from Group PJ
# Temporary file for "Planning"
planning_temp_2=tempfile(fileext=".rds")
# Temporary file for "Production"
production_temp_2=tempfile(fileext=".rds")
# Temporary file for "Consumption"
consumption_temp_2=tempfile(fileext=".rds")
# Downloading file from repository to the "Planning" temp
download.file("https://github.com/pjournal/mef03g-Kar-R-sizlar/blob/master/planning.rds?raw=true",destfile=planning_temp_2,mode='wb')
# Downloading file from repository to the "Production" temp
download.file("https://github.com/pjournal/mef03g-Kar-R-sizlar/blob/master/production.rds?raw=true",destfile=production_temp_2,mode='wb')
# Downloading file from repository to the "Consumption" temp
download.file("https://github.com/pjournal/mef03g-Kar-R-sizlar/blob/master/consumption.rds?raw=true",destfile=consumption_temp_2,mode='wb')
# Reading the RDS files
planning_raw_data=read.csv(planning_temp_2)
production_raw_data=read.csv(production_temp_2)
consumption_raw_data=read.csv(consumption_temp_2)
# Removing the temp files
file.remove(planning_temp_2)
## [1] TRUE
file.remove(production_temp_2)
## [1] TRUE
file.remove(consumption_temp_2)
## [1] TRUE
For more information on the topics below, please visit the Project Proposal page;