load("C:/Users/ayo/Desktop/atp_tennis_data_2017.RData")
Let’s find the player’s coutries who is ranked as top 100.
rank_df %>% group_by(player_id) %>% summarize(total_points=sum(ranking_points)) %>%
top_n(100) %>% left_join(.,player_df) %>%
group_by (flag_code) %>% count() %>% arrange(desc(n)) %>%
ggplot(data=., aes(x=reorder(flag_code,-n), y=n, fill=flag_code)) +
geom_bar(stat = "identity") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 0.6))
## Selecting by total_pointsJoining, by = "player_id"
Let’s find the players who didn’t win in Finals (who either lose or didn’t play in Finals at all)
score_df %>% filter(tourney_round_name=='Finals') %>% anti_join(player_df,., by=c("player_id" = "winner_player_id")) %>%
select(first_name, last_name, flag_code)
## # A tibble: 10,877 x 3
## first_name last_name flag_code
## <chr> <chr> <chr>
## 1 Ricardo Acuna CHI
## 2 Sadiq Abdullahi NGR
## 3 Nelson Aerts BRA
## 4 Egan Adams USA
## 5 Ronald Agenor USA
## 6 Juan Aguilera ESP
## 7 Marc Albert NED
## 8 Marco Alciati ITA
## 9 Richard Akel USA
## 10 John Alexander AUS
## # ... with 10,867 more rows