library(tidyverse)
library(ggplot2)
library(kableExtra)
url<-url("https://github.com/pjournal/mef03-bdemirgulle/blob/master/atp_tennis_data_2017.RData?raw=TRUE")
atp_tennis<-load(url)
Rank countries (flag codes) by the number of singles champions
singles_winners<-left_join(tourney_df,player_df,by=c("singles_winner_player_id"="player_id"))
champ_flags_df<-singles_winners%>%select(singles_winner_player_id,flag_code)%>%count(flag_code,sort=T)
champ_flags_df
## # A tibble: 21 x 2
## flag_code n
## <chr> <int>
## 1 ESP 11
## 2 USA 9
## 3 SUI 8
## 4 FRA 7
## 5 GER 7
## 6 BUL 4
## 7 ARG 2
## 8 BEL 2
## 9 BIH 2
## 10 CRO 2
## # ... with 11 more rows
Rank countries which did not get any singles championships by the games won when they win the match
nonchamp_players<- player_df %>%select(player_id, flag_code) %>%anti_join(., champ_flags_df,by="flag_code")
nonchamp_players %>% left_join(.,score_df, by= c("player_id"="winner_player_id")) %>%group_by(flag_code) %>%summarise(total_won= sum(winner_games_won, na.rm=TRUE)) %>%arrange(desc(total_won))
## # A tibble: 93 x 2
## flag_code total_won
## <chr> <dbl>
## 1 AUS 1989
## 2 CZE 1209
## 3 CAN 1190
## 4 SVK 889
## 5 BRA 873
## 6 POR 621
## 7 RSA 566
## 8 KAZ 495
## 9 KOR 438
## 10 GEO 377
## # ... with 83 more rows
Roger Federer Lost Tourney Round Details
roger_federer <- player_df %>% filter (first_name=="Roger",last_name=="Federer")
roger_federer_match_lost <- semi_join(score_df,roger_federer,by= c("loser_player_id"="player_id"))%>% count(tourney_round_name,sort=T)
roger_federer_match_lost
## # A tibble: 4 x 2
## tourney_round_name n
## <chr> <int>
## 1 Round of 16 2
## 2 Finals 1
## 3 Quarter-Finals 1
## 4 Semi-Finals 1
Roger Federer Winner Tourney Round Details
roger_federer <- player_df %>% filter (first_name=="Roger",last_name=="Federer")
roger_federer_match_win <- semi_join(score_df,roger_federer,by= c("winner_player_id"="player_id"))%>% count(tourney_round_name,sort=T)
roger_federer_match_win
## # A tibble: 8 x 2
## tourney_round_name n
## <chr> <int>
## 1 Round of 32 10
## 2 Round of 16 9
## 3 Quarter-Finals 8
## 4 Semi-Finals 8
## 5 Finals 7
## 6 Round of 64 5
## 7 Round of 128 3
## 8 Round Robin 3
The winners against to Roger Federer
roger_federer <- player_df %>% filter (first_name=="Roger",last_name=="Federer")
roger_federer_match_lost <- semi_join(score_df,roger_federer,by= c("loser_player_id"="player_id"))
roger_federer_match_lost_winner_player <- semi_join(player_df,roger_federer_match_lost,by= c("player_id"="winner_player_id"))
roger_federer_match_lost_winner_player
## # A tibble: 5 x 13
## player_id player_slug first_name last_name flag_code residence
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 d683 juan-marti~ Juan Mart~ del Potro ARG Tandil, ~
## 2 d864 evgeny-don~ Evgeny Donskoy RUS Moscow, ~
## 3 gb88 david-goff~ David Goffin BEL Monte Ca~
## 4 h355 tommy-haas Tommy Haas GER Bradento~
## 5 z355 alexander-~ Alexander Zverev GER Monte Ca~
## # ... with 7 more variables: birth_place <chr>, birth_date <date>,
## # turned_pro <dbl>, weight_kg <dbl>, height_cm <dbl>, handedness <chr>,
## # backhand <chr>
Avarage KG and Height of the winners against to Roger Federer
roger_federer_match_lost_winner_player_kg<-roger_federer_match_lost_winner_player %>% summarise(mean_weight=mean(weight_kg),mean_height=mean(height_cm))
roger_federer_match_lost_winner_player_kg
## # A tibble: 1 x 2
## mean_weight mean_height
## <dbl> <dbl>
## 1 81.8 190.