REQUIRED PACKAGE

library(tidyverse) ## dplyr provides the join functions
## ── Attaching packages ─────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.2.1     ✔ purrr   0.3.3
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   1.0.0     ✔ stringr 1.4.0
## ✔ readr   1.3.1     ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()

Data Avaliable Here

After Download Data from Link Above

Load the data to your Working Directory with code below

load("/home/mustafa-omer/İndirilenler/atp_tennis_data_2017.RData") # Change Path according to your data location you may use file.chose() function to reach your data path 

DATA EXAMINATION

str(player_df)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 10912 obs. of  13 variables:
##  $ player_id  : chr  "a002" "a001" "a005" "a004" ...
##  $ player_slug: chr  "ricardo-acuna" "sadiq-abdullahi" "nelson-aerts" "egan-adams" ...
##  $ first_name : chr  "Ricardo" "Sadiq" "Nelson" "Egan" ...
##  $ last_name  : chr  "Acuna" "Abdullahi" "Aerts" "Adams" ...
##  $ flag_code  : chr  "CHI" "NGR" "BRA" "USA" ...
##  $ residence  : chr  "Jupiter, FL, USA" NA NA "Palmetto, FL, USA" ...
##  $ birth_place: chr  "Santiago, Chile" NA "Cachoeira Do Sul, Brazil" "Miami Beach, FL, USA" ...
##  $ birth_date : Date, format: "1958-01-13" "1960-02-02" ...
##  $ turned_pro : num  0 0 0 0 1983 ...
##  $ weight_kg  : num  68 0 75 73 82 68 0 0 0 82 ...
##  $ height_cm  : num  175 0 188 178 180 183 0 0 0 191 ...
##  $ handedness : chr  NA NA NA NA ...
##  $ backhand   : chr  NA NA NA NA ...
str(rank_df)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 87740 obs. of  6 variables:
##  $ week_title     : Date, format: "2017-11-20" "2017-11-20" ...
##  $ player_id      : chr  "n409" "f324" "d875" "z355" ...
##  $ rank_number    : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ ranking_points : num  10645 9605 5150 4610 4015 ...
##  $ tourneys_played: num  18 17 23 25 27 22 26 22 15 25 ...
##  $ player_age     : num  31 36 26 20 24 29 26 25 32 26 ...
str(score_df)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 3830 obs. of  14 variables:
##  $ match_id             : chr  "2017-339-d875-n552" "2017-339-d875-r975" "2017-339-n552-w367" "2017-339-r975-n409" ...
##  $ tourney_id           : chr  "339" "339" "339" "339" ...
##  $ tourney_round_name   : chr  "Finals" "Semi-Finals" "Semi-Finals" "Quarter-Finals" ...
##  $ winner_player_id     : chr  "d875" "d875" "n552" "r975" ...
##  $ loser_player_id      : chr  "n552" "r975" "w367" "n409" ...
##  $ winner_seed          : chr  "7" "7" "3" "1" ...
##  $ loser_seed           : chr  "3" "1" "2" "5" ...
##  $ match_score_tiebreaks: chr  "62 26 63" "76(7) 62" "76(3) 63" "46 63 64" ...
##  $ winner_sets_won      : num  2 2 2 2 2 2 2 2 2 2 ...
##  $ loser_sets_won       : num  1 0 0 1 1 0 1 0 0 1 ...
##  $ winner_games_won     : num  14 13 13 16 18 12 16 12 13 16 ...
##  $ loser_games_won      : num  11 8 9 13 15 2 12 5 10 13 ...
##  $ winner_tiebreaks_won : num  0 1 1 0 0 0 0 0 1 0 ...
##  $ loser_tiebreaks_won  : num  0 0 0 0 1 0 0 0 0 0 ...
str(stats_df)
## Classes 'tbl_df', 'tbl' and 'data.frame':    3811 obs. of  54 variables:
##  $ match_id                        : chr  "2017-339-r975-n409" "2017-339-d875-n552" "2017-339-d875-r975" "2017-339-n552-w367" ...
##  $ match_time                      : 'hms' num  02:21:00 01:49:00 01:28:00 01:42:00 ...
##   ..- attr(*, "units")= chr "secs"
##  $ match_duration                  : num  141 109 88 102 125 156 62 69 89 90 ...
##  $ winner_aces                     : num  23 7 4 1 3 11 3 12 11 7 ...
##  $ winner_double_faults            : num  3 2 1 1 3 3 0 1 1 2 ...
##  $ winner_first_serves_in          : num  62 52 36 56 52 67 19 40 44 41 ...
##  $ winner_first_serves_total       : num  97 77 58 77 94 119 34 53 65 64 ...
##  $ winner_first_serve_points_won   : num  50 41 27 37 42 47 18 30 36 33 ...
##  $ winner_first_serve_points_total : num  62 52 36 56 52 67 19 40 44 41 ...
##  $ winner_second_serve_points_won  : num  16 12 18 14 23 28 10 7 15 15 ...
##  $ winner_second_serve_points_total: num  35 25 22 21 42 52 15 13 21 23 ...
##  $ winner_break_points_saved       : num  6 5 0 4 13 11 0 2 4 0 ...
##  $ winner_break_points_serve_total : num  7 7 0 5 14 13 0 3 4 1 ...
##  $ winner_service_points_won       : num  66 53 45 51 65 75 28 37 51 48 ...
##  $ winner_service_points_total     : num  97 77 58 77 94 119 34 53 65 64 ...
##  $ winner_first_serve_return_won   : num  22 13 4 10 8 13 13 12 1 7 ...
##  $ winner_first_serve_return_total : num  61 49 28 37 37 65 28 29 35 46 ...
##  $ winner_second_serve_return_won  : num  9 11 17 14 21 21 14 9 14 17 ...
##  $ winner_second_serve_return_total: num  23 20 33 24 45 32 19 15 23 25 ...
##  $ winner_break_points_converted   : num  2 3 2 2 3 4 5 4 1 2 ...
##  $ winner_break_points_return_total: num  4 5 4 2 7 10 8 6 4 5 ...
##  $ winner_service_games_played     : num  15 13 10 11 14 16 7 9 11 11 ...
##  $ winner_return_games_played      : num  14 12 10 10 14 16 7 8 10 11 ...
##  $ winner_return_points_won        : num  31 24 21 24 29 34 27 21 15 24 ...
##  $ winner_return_points_total      : num  84 69 61 61 82 97 47 44 58 71 ...
##  $ winner_total_points_won         : num  97 77 66 75 94 109 55 58 66 72 ...
##  $ winner_total_points_total       : num  181 146 119 138 176 216 81 97 123 135 ...
##  $ loser_aces                      : num  4 4 4 9 6 2 1 0 11 5 ...
##  $ loser_double_faults             : num  0 0 3 2 5 2 2 1 1 7 ...
##  $ loser_first_serves_in           : num  61 49 28 37 37 65 28 29 35 46 ...
##  $ loser_first_serves_total        : num  84 69 61 61 82 97 47 44 58 71 ...
##  $ loser_first_serve_points_won    : num  39 36 24 27 29 52 15 17 34 39 ...
##  $ loser_first_serve_points_total  : num  61 49 28 37 37 65 28 29 35 46 ...
##  $ loser_second_serve_points_won   : num  14 9 16 10 24 11 5 6 9 8 ...
##  $ loser_second_serve_points_total : num  23 20 33 24 45 32 19 15 23 25 ...
##  $ loser_break_points_saved        : num  2 2 2 0 4 6 3 2 3 3 ...
##  $ loser_break_points_serve_total  : num  4 5 4 2 7 10 8 6 4 5 ...
##  $ loser_service_points_won        : num  53 45 40 37 53 63 20 23 43 47 ...
##  $ loser_service_points_total      : num  84 69 61 61 82 97 47 44 58 71 ...
##  $ loser_first_serve_return_won    : num  12 11 9 19 10 20 1 10 8 8 ...
##  $ loser_first_serve_return_total  : num  62 52 36 56 52 67 19 40 44 41 ...
##  $ loser_second_serve_return_won   : num  19 13 4 7 19 24 5 6 6 8 ...
##  $ loser_second_serve_return_total : num  35 25 22 21 42 52 15 13 21 23 ...
##  $ loser_break_points_converted    : num  1 2 0 1 1 2 0 1 0 1 ...
##  $ loser_break_points_return_total : num  7 7 0 5 14 13 0 3 4 1 ...
##  $ loser_service_games_played      : num  14 12 10 10 14 16 7 8 10 11 ...
##  $ loser_return_games_played       : num  15 13 10 11 14 16 7 9 11 11 ...
##  $ loser_return_points_won         : num  31 24 13 26 29 44 6 16 14 16 ...
##  $ loser_return_points_total       : num  97 77 58 77 94 119 34 53 65 64 ...
##  $ loser_total_points_won          : num  84 69 53 63 82 107 26 39 57 63 ...
##  $ loser_total_points_total        : num  181 146 119 138 176 216 81 97 123 135 ...
##  $ tourney_id                      : chr  "339" "339" "339" "339" ...
##  $ winner_player_id                : chr  "r975" "d875" "d875" "n552" ...
##  $ loser_player_id                 : chr  "n409" "n552" "r975" "w367" ...
str(tourney_df)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 67 obs. of  12 variables:
##  $ tourney_id                : num  339 891 451 338 301 ...
##  $ tourney_name              : chr  "Brisbane International presented by Suncorp" "Aircel Chennai Open" "Qatar ExxonMobil Open" "Sydney International" ...
##  $ tourney_location          : chr  "Brisbane, Australia" "Chennai, India" "Doha, Qatar" "Sydney, Australia" ...
##  $ tourney_date              : Date, format: "2017-01-01" "2017-01-02" ...
##  $ tourney_singles_draw      : num  28 28 32 28 28 128 28 28 28 28 ...
##  $ tourney_doubles_draw      : num  28 28 32 28 28 128 28 28 28 28 ...
##  $ tourney_conditions        : chr  "Outdoor" "Outdoor" "Outdoor" "Outdoor" ...
##  $ tourney_surface           : chr  "Hard" "Hard" "Hard" "Hard" ...
##  $ tourney_fin_commit        : chr  "$495,630" "$505,730" "$1,334,270" "$495,630" ...
##  $ singles_winner_player_id  : chr  "d875" "bd06" "d643" "ma30" ...
##  $ doubles_winner_1_player_id: chr  "kd46" "b757" "ca12" "kc41" ...
##  $ doubles_winner_2_player_id: chr  "tc61" "n480" "me04" "mb88" ...

QUESTION-1: Rank countries (flag cıdes) by the number of singles champions

Solution-1:

champ_flags_df<-tourney_df%>%left_join(.,player_df,by=c("singles_winner_player_id"="player_id"))%>%count(flag_code,sort = TRUE)
champ_flags_df
## # A tibble: 21 x 2
##    flag_code     n
##    <chr>     <int>
##  1 ESP          11
##  2 USA           9
##  3 SUI           8
##  4 FRA           7
##  5 GER           7
##  6 BUL           4
##  7 ARG           2
##  8 BEL           2
##  9 BIH           2
## 10 CRO           2
## # … with 11 more rows

QUESTION-2: Rank countries which did not get any singles championships by the games won when they win the match

Solution-2:

nonchamp_players<-player_df%>%select(player_id,flag_code)%>%anti_join(.,champ_flags_df)
## Joining, by = "flag_code"
loser_countries_rank<-nonchamp_players%>%left_join(.,score_df,by=c("player_id"="winner_player_id"))%>%group_by(flag_code)%>%summarise(total_won=sum(winner_games_won,na.rm = TRUE))%>%arrange(desc(total_won))
loser_countries_rank
## # A tibble: 93 x 2
##    flag_code total_won
##    <chr>         <dbl>
##  1 AUS            1989
##  2 CZE            1209
##  3 CAN            1190
##  4 SVK             889
##  5 BRA             873
##  6 POR             621
##  7 RSA             566
##  8 KAZ             495
##  9 KOR             438
## 10 GEO             377
## # … with 83 more rows

ANALYSIS-1: Youngest Winner her/his birth date and name of tournament that s/he won

winner_tourney_match_df<-left_join(tourney_df,player_df,by=c("singles_winner_player_id"="player_id"))
sorted_by_desc_birth_date_winner_df<-winner_tourney_match_df%>%select(first_name,last_name,birth_date,tourney_name)%>%arrange(desc(birth_date))
youngest_winner_birth_date_tourney<-sorted_by_desc_birth_date_winner_df[1,]
youngest_winner_birth_date_tourney
## # A tibble: 1 x 4
##   first_name last_name birth_date tourney_name                  
##   <chr>      <chr>     <date>     <chr>                         
## 1 Andrey     Rublev    1997-10-20 Plava Laguna Croatia Open Umag

ANALYSIS-2: Best Player of 2017 and Number of succeeded tournaments by her/him

success_df<-score_df%>%select(tourney_id,tourney_round_name,winner_player_id)%>%filter(tourney_round_name=="Finals")%>%count(winner_player_id,sort = TRUE)
best_player_2007<-player_df%>%left_join(.,success_df,by=c("player_id"="winner_player_id"))%>%select(first_name,last_name,n)%>%arrange(desc(n))%>%slice(1)
best_player_2007
## # A tibble: 1 x 3
##   first_name last_name     n
##   <chr>      <chr>     <int>
## 1 Roger      Federer       7