library(tidyverse)
library(dplyr)
library(ggplot2)

1. Data Import

##  chr [1:6] "tourney_df" "player_df" "stats_df" "score_df" "rank_df" ...

1.2. Flag Code Rankings

## # A tibble: 21 x 2
##    flag_code     n
##    <chr>     <int>
##  1 ESP          11
##  2 USA           9
##  3 SUI           8
##  4 FRA           7
##  5 GER           7
##  6 BUL           4
##  7 ARG           2
##  8 BEL           2
##  9 BIH           2
## 10 CRO           2
## # … with 11 more rows

1.3. Rank countries which did not get any singles championships by the games won when they win the match

## # A tibble: 93 x 2
##    flag_code total_won
##    <chr>         <dbl>
##  1 AUS            1989
##  2 CZE            1209
##  3 CAN            1190
##  4 SVK             889
##  5 BRA             873
##  6 POR             621
##  7 RSA             566
##  8 KAZ             495
##  9 KOR             438
## 10 GEO             377
## # … with 83 more rows

1.3. Hand Details of Champions

## # A tibble: 4 x 3
##   handedness   backhand                n
##   <chr>        <chr>               <int>
## 1 Right-Handed Two-Handed Backhand    41
## 2 Right-Handed One-Handed Backhand    17
## 3 Left-Handed  Two-Handed Backhand     8
## 4 Left-Handed  One-Handed Backhand     1

1.4. Total Match Counts And Average Match Durations of Tournaments

## # A tibble: 67 x 2
##    tourney_name                 total_duration
##    <chr>                                 <dbl>
##  1 Australian Open                       29548
##  2 Roland Garros                         29516
##  3 Wimbledon                             28437
##  4 US Open                               18702
##  5 Miami Open presented by Itaú          12732
##  6 BNP Paribas Open                      12551
##  7 Coupe Rogers                           7747
##  8 Rolex Monte-Carlo Masters              7542
##  9 Mutua Madrid Open                      7531
## 10 Internazionali BNL d’Italia            7523
## # … with 57 more rows