library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------------------------------- tidyverse 1.2.1 --
## <U+221A> ggplot2 3.2.1 <U+221A> purrr 0.3.3
## <U+221A> tibble 2.1.3 <U+221A> dplyr 0.8.3
## <U+221A> tidyr 1.0.0 <U+221A> stringr 1.4.0
## <U+221A> readr 1.3.1 <U+221A> forcats 0.4.0
## -- Conflicts ----------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
our_data <- "~/atp_tennis_data_2017.RData"
load(our_data)
task1 <- inner_join(tourney_df, player_df, by = c("singles_winner_player_id"="player_id"))
champ_flags_df<- task1 %>%
group_by(flag_code) %>% count(flag_code, sort=TRUE)
champ_flags_df
## # A tibble: 21 x 2
## # Groups: flag_code [21]
## flag_code n
## <chr> <int>
## 1 ESP 11
## 2 USA 9
## 3 SUI 8
## 4 FRA 7
## 5 GER 7
## 6 BUL 4
## 7 ARG 2
## 8 BEL 2
## 9 BIH 2
## 10 CRO 2
## # ... with 11 more rows
nonchamp_players<- player_df %>%
select(player_id, flag_code) %>%
anti_join(., champ_flags_df)
## Joining, by = "flag_code"
nonchamp_players %>% left_join(.,score_df, by= c("player_id"="winner_player_id")) %>%
group_by(flag_code) %>%
summarise(total_won= sum(winner_games_won, na.rm=TRUE)) %>%
arrange(desc(total_won))
## # A tibble: 93 x 2
## flag_code total_won
## <chr> <dbl>
## 1 AUS 1989
## 2 CZE 1209
## 3 CAN 1190
## 4 SVK 889
## 5 BRA 873
## 6 POR 621
## 7 RSA 566
## 8 KAZ 495
## 9 KOR 438
## 10 GEO 377
## # ... with 83 more rows
both_champions<- tourney_df %>%
filter(singles_winner_player_id==doubles_winner_1_player_id|
singles_winner_player_id==doubles_winner_2_player_id)
names_player_bc<- inner_join(both_champions, player_df, by = c("singles_winner_player_id"="player_id"))
names_player_bc$player_slug
## [1] "alexander-zverev"
task4 <- inner_join(tourney_df, player_df, by = c("singles_winner_player_id"="player_id"))
which_hand<- task1 %>%
group_by(handedness) %>% count(handedness)
which_hand
## # A tibble: 2 x 2
## # Groups: handedness [2]
## handedness n
## <chr> <int>
## 1 Left-Handed 9
## 2 Right-Handed 58
title: “ATP_Assignment” author: “Bulent Buyuk” date: “27 11 2019” output: html_document —
library(tidyverse)
our_data <- "~/atp_tennis_data_2017.RData"
load(our_data)
task1 <- inner_join(tourney_df, player_df, by = c("singles_winner_player_id"="player_id"))
champ_flags_df<- task1 %>%
group_by(flag_code) %>% count(flag_code, sort=TRUE)
champ_flags_df
## # A tibble: 21 x 2
## # Groups: flag_code [21]
## flag_code n
## <chr> <int>
## 1 ESP 11
## 2 USA 9
## 3 SUI 8
## 4 FRA 7
## 5 GER 7
## 6 BUL 4
## 7 ARG 2
## 8 BEL 2
## 9 BIH 2
## 10 CRO 2
## # ... with 11 more rows
nonchamp_players<- player_df %>%
select(player_id, flag_code) %>%
anti_join(., champ_flags_df)
## Joining, by = "flag_code"
nonchamp_players %>% left_join(.,score_df, by= c("player_id"="winner_player_id")) %>%
group_by(flag_code) %>%
summarise(total_won= sum(winner_games_won, na.rm=TRUE)) %>%
arrange(desc(total_won))
## # A tibble: 93 x 2
## flag_code total_won
## <chr> <dbl>
## 1 AUS 1989
## 2 CZE 1209
## 3 CAN 1190
## 4 SVK 889
## 5 BRA 873
## 6 POR 621
## 7 RSA 566
## 8 KAZ 495
## 9 KOR 438
## 10 GEO 377
## # ... with 83 more rows
both_champions<- tourney_df %>%
filter(singles_winner_player_id==doubles_winner_1_player_id|
singles_winner_player_id==doubles_winner_2_player_id)
names_player_bc<- inner_join(both_champions, player_df, by = c("singles_winner_player_id"="player_id"))
names_player_bc$player_slug
## [1] "alexander-zverev"
task4 <- inner_join(tourney_df, player_df, by = c("singles_winner_player_id"="player_id"))
which_hand<- task1 %>%
group_by(handedness) %>% count(handedness)
which_hand
## # A tibble: 2 x 2
## # Groups: handedness [2]
## handedness n
## <chr> <int>
## 1 Left-Handed 9
## 2 Right-Handed 58