
Introduction to R
BDA 503

Sep 26, 2017

Contents
Briefly About R 1

Getting Ready 2

R 101 2
Value Assignment, Vectors and Data Types . 2
Object Types . 3

Vector . 3
Matrix . 4
Data Frame . 7
List . 8

Useful Base R Functions . 9
Sorting, Ranking and Ordering . 11
Logical operators . 11
Statistics Functions . 13
Conversion between data and object types . 14
String Manipulation . 15

Conditionals (If-Else) . 16
Loops . 16

For . 16
While . 17

Functions . 17
Input Output (I/O) Operations . 18

RData . 19
Packages . 19

Plotting . 19
Recommendations . 21

R Cheat Sheets . 22
Past Versions . 22

Briefly About R

R is a scripting language1 with the main purpose of conducting tasks related to statistics, mainly by academics
for the academics. Though, these days things got slightly out of hand and R became one of the most popular
languages especially in the field of “data science”. The biggest advantage of R is the huge package (R
equivalent of “There is an app for that”) and developer support.

Other main points to know about R are as follows.

• R is mainly based on vector operations.2
• R inherently does not support parallel processing. (There are solutions but still frustrating.)
1Read as not compiled like C or C++. Line by line, you can run the code.
2Currently, take it as a warning of “Do not use unnecessary loops (i.e. for) in your code.”

1

• R does all the computations in the memory. A bit problematic for bigger data (>10M rows) applications,
but there are solutions as well.

• Even though R packages have magnificent reporting tools (e.g. This document is prepared using R
Markdown.), it is not suitable for all purpose use such as Python (especially web development).

• Package management is mainly done by CRAN repository. Though, these days there are many packages
in other sources as well For instance, putting R packages on GitHub before CRAN for testing is quite
popular.

• There is a Microsoft version of R with additional abilities (It supports Mac and Linux, too).

A list of resources with links and explanations will be given at the end of this document.

Getting Ready

• Download R from this link https://cran.r-project.org/ (latest release will be 3.4.2 as of Sep 29, 2017)
and install. Make sure it is working.

• Recommended to choose an editor (see R 101 below for alternatives).

R 101

This part lays out the very basics of R. Content is mainly about data types (numeric, character and logical),
object types (vectors, matrices, lists and) and basic operations. Before starting check the following tips that
can be useful.

• Commenting the code is done with # for each line. There is no block comment like /* */ used in C,
but there are block commment keyboard shortcuts for most editors.

• If you need information about any object just put ? before the object. For example, try ?mean to get
information about the function mean.

• You will need a good code editor or an IDE (Integrated Development Environment). Most popular
choice of an IDE for R is RStudio (Remember to install R first). Recommended alternatives are Atom
and Sublime Text with proper add-ons.

Value Assignment, Vectors and Data Types

Values can be defined on variables with the assignment operator <- or =.3 For example let’s assign a numeric
value to the variable x.4 You don’t need to define a variable, assigning a value is enough.
x <- 522
x

[1] 522

Your can also assign character strings,
x <- "BDA503"
x

[1] "BDA503"

and logical. (There is also a factor type, but it is skipped for now.)
3You can use either or both; there is only a small difference between those two.
4You can specifically define integer, double or complex numeric types. For the sake of simplicity let’s use only numeric, for

now.

2

https://cran.r-project.org/
https://www.rstudio.com/
http://atom.io/
https://www.sublimetext.com/

x <- FALSE
x

[1] FALSE

Object Types

In this part, object types such as vector, matrix, data.frame and list are explained. Although this is not
a complete list (e.g. array is another object type) and object is a more general concept, these object types
are mostly sufficient at beginner and intermediate levels.

Vector

Most basic data structure is a vector. You can create a simple vector with c() (combine).
x <- c(5,2,2)
x

[1] 5 2 2

You can change any value in a vector by defining its index. Index starts with 1.
x[2] <- 7
x

[1] 5 7 2

You can omit a value by putting a negative index.
x[-2] <- 0
x

[1] 0 7 0

R handles out of bounds index values and returns NA.
x[5] <- 10
x

[1] 0 7 0 NA 10

You can define multiple index values and define rules to choose the index.
x2 <- 10:19 #This is a special representation that generates a vector from a (10) to b (19).
x2[c(1,3,7)] #Return 1st, 3rd and 7th values.

[1] 10 12 16
x2[(1:3)] #Return 1st to 3rd values.

[1] 10 11 12
x2[x2>15] #Return the index values where x2 > 15

[1] 16 17 18 19
x2>15

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

You can give names instead of index values.

3

x3<-c(1,2,3)
names(x3)<-c("a1","b2","c3")
x3

a1 b2 c3
1 2 3
x3["b2"]

b2
2

If you try to combine different data types, R will transform them to characters or numeric.
c(5,FALSE)

[1] 5 0
c(5,FALSE,"BDA503")

[1] "5" "FALSE" "BDA503"

Mathematical operations can be easily done with vectors.
vec1 <- 1:5 # This is a special representation of consecutive numbers.
vec1

[1] 1 2 3 4 5
vec2 <- vec1 * 2
vec2

[1] 2 4 6 8 10
vec1 + vec2

[1] 3 6 9 12 15

Vectors need not to be of equal size (though recommended).
vec1 <- 1:6
vec2 <- 3:5
vec1 + vec2

[1] 4 6 8 7 9 11

Matrix

Matrix is more like a stylized vector in a rectangular (matrix) format with some special functions.
mat1<-matrix(1:9, ncol=3, nrow=3)
mat1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

You can manipulate a value of a matrix by giving its index value.
mat1[2,2] <- -10
mat1

4

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 -10 8
[3,] 3 6 9

Here are some basic matrix operations.
mat2 <- matrix(c(0,4,1,2,0,0,0,0,1),ncol=3)
mat2

[,1] [,2] [,3]
[1,] 0 2 0
[2,] 4 0 0
[3,] 1 0 1
t(mat2) # Transpose of a matrix

[,1] [,2] [,3]
[1,] 0 4 1
[2,] 2 0 0
[3,] 0 0 1
solve(mat2) # Inverse of a matrix

[,1] [,2] [,3]
[1,] 0.0 0.25 0
[2,] 0.5 0.00 0
[3,] 0.0 -0.25 1
det(mat2) # Determinant value of a matrix

[1] -8
dim(mat2) # Dimensions of a matrix

[1] 3 3
nrow(mat2) # Number of rows of a matrix

[1] 3
ncol(mat2) # Number of columns of a matrix

[1] 3
diag(mat2) # Diagonal values of a matrix

[1] 0 0 1
eigen(mat2) # Eigenvalues and eigenvectors of a matrix

eigen() decomposition
$values
[1] 2.828427 -2.828427 1.000000
##
$vectors
[,1] [,2] [,3]
[1,] 0.5505553 0.5708950 0
[2,] 0.7786028 -0.8073674 0
[3,] 0.3011087 -0.1491200 1

5

mat1 %*% mat2 # Matrix multiplication

[,1] [,2] [,3]
[1,] 23 2 7
[2,] -32 4 8
[3,] 33 6 9

You can also do vector operations with matrices.
mat1 + mat2

[,1] [,2] [,3]
[1,] 1 6 7
[2,] 6 -10 8
[3,] 4 6 10
mat1 - mat2

[,1] [,2] [,3]
[1,] 1 2 7
[2,] -2 -10 8
[3,] 2 6 8
mat1 / mat2

[,1] [,2] [,3]
[1,] Inf 2 Inf
[2,] 0.5 -Inf Inf
[3,] 3.0 Inf 9
mat1 * mat2

[,1] [,2] [,3]
[1,] 0 8 0
[2,] 8 0 0
[3,] 3 0 9

You can do operations with matrices and vectors together. Then matrix is treated like a vector with the
index column order (i.e. starts from top to bottom, then goes to next column).
mat3 <- matrix(1:9,ncol=3)
mat3

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
vec <- c(0,1,0)
mat3 + vec

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 3 6 9
[3,] 3 6 9
mat3 * vec

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 2 5 8

6

[3,] 0 0 0

You can name rows and columns of a matrix.
rownames(mat3) <- c("a","b","c")
colnames(mat3) <- c("y1","y2","y3")
mat3

y1 y2 y3
a 1 4 7
b 2 5 8
c 3 6 9

Data Frame

Data frame is the most useful object type. Unlike matrix and vector you can define different data types for
different columns.
df1 <- data.frame(some_numbers=1:3,some_names=c("Blood","Sweat","Tears"),some_logical=c(TRUE,FALSE,TRUE))
df1

some_numbers some_names some_logical
1 1 Blood TRUE
2 2 Sweat FALSE
3 3 Tears TRUE

You can see the details of an object (in this case the data frame) using str() function.
str(df1)

'data.frame': 3 obs. of 3 variables:
$ some_numbers: int 1 2 3
$ some_names : Factor w/ 3 levels "Blood","Sweat",..: 1 2 3
$ some_logical: logi TRUE FALSE TRUE

You easily can do operations on a single column using $.
df1$some_numbers

[1] 1 2 3
df1$some_names

[1] Blood Sweat Tears
Levels: Blood Sweat Tears
df1$some_logical

[1] TRUE FALSE TRUE
df1$some_numbers <- df1$some_numbers^2
df1

some_numbers some_names some_logical
1 1 Blood TRUE
2 4 Sweat FALSE
3 9 Tears TRUE

There are many example data sets in base R and packages in data.frame format. For instance,
EuStockMarkets contains the closing prices of DAX (Germany), SMI (Switzerland), CAC (French), FTSE
(UK) stock market indices.

7

head(EuStockMarkets) #head() function shows the first rows of a data frame.

DAX SMI CAC FTSE
[1,] 1628.75 1678.1 1772.8 2443.6
[2,] 1613.63 1688.5 1750.5 2460.2
[3,] 1606.51 1678.6 1718.0 2448.2
[4,] 1621.04 1684.1 1708.1 2470.4
[5,] 1618.16 1686.6 1723.1 2484.7
[6,] 1610.61 1671.6 1714.3 2466.8

List

Lists can hold many objects (including lists).
list1 <- list(df1,mat3,vec2)
list1

[[1]]
some_numbers some_names some_logical
1 1 Blood TRUE
2 4 Sweat FALSE
3 9 Tears TRUE
##
[[2]]
y1 y2 y3
a 1 4 7
b 2 5 8
c 3 6 9
##
[[3]]
[1] 3 4 5
list1[[1]]

some_numbers some_names some_logical
1 1 Blood TRUE
2 4 Sweat FALSE
3 9 Tears TRUE

You can name the objects and call them with the names if you like.
list1 <- list(some_df=df1,some_mat=mat3,vec2)
list1

$some_df
some_numbers some_names some_logical
1 1 Blood TRUE
2 4 Sweat FALSE
3 9 Tears TRUE
##
$some_mat
y1 y2 y3
a 1 4 7
b 2 5 8
c 3 6 9
##

8

[[3]]
[1] 3 4 5
list1$some_df

some_numbers some_names some_logical
1 1 Blood TRUE
2 4 Sweat FALSE
3 9 Tears TRUE

Lists are frequently used in functions as parameter set holders and for other purposes.

Useful Base R Functions

Remember, you can always look for help for a function using ?function_name or help(function_name).
This is not an exhaustive list, there are many other fantastic functions in base R.
rep(x=5,times=10) #Repeat a value or a vector

[1] 5 5 5 5 5 5 5 5 5 5
seq(from=5,to=10,length.out=11) #Create a sequence with the given number of equidistant elements

[1] 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
seq(from=5,to=10,by=0.25) #Create a sequence with the given increment value

[1] 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50
[12] 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00
vec1 <- sample(x=1:10,size=10,replace=FALSE) #Pick 10 numbers randomly without replacement (Note: Your results might differ from this document due to randomness.)
vec1

[1] 6 9 10 1 8 3 7 5 2 4
print(vec1/2) #Print the outputs of an object. Useful for later.

[1] 3.0 4.5 5.0 0.5 4.0 1.5 3.5 2.5 1.0 2.0
rev(vec1) #Reverse of a vector

[1] 4 2 5 7 3 8 1 10 9 6
length(vec1) #Number of elements of a vector

[1] 10
vec1 %% 2 #Mod 2 of the elements in the vector

[1] 0 1 0 1 0 1 1 1 0 0
min(vec1) #Minimum value of the vector

[1] 1
max(vec1) #Maximum value of the vector

[1] 10
factorial(vec1) #Factorial value of all elements of a vector (You can use a single value as well)

[1] 720 362880 3628800 1 40320 6 5040 120
[9] 2 24

9

sum(vec1) #Sum of all the values in the vector

[1] 55
cumsum(vec1) #Cumulative sum of all the values in the vector

[1] 6 15 25 26 34 37 44 49 51 55
prod(vec1) #Product (multiplication) of all the values in the vector

[1] 3628800
cumprod(vec1) #Cumulative product of all the values in the vector

[1] 6 54 540 540 4320 12960 90720 453600
[9] 907200 3628800
log(vec1) #Natural logarithm of the values in the vector

[1] 1.7917595 2.1972246 2.3025851 0.0000000 2.0794415 1.0986123 1.9459101
[8] 1.6094379 0.6931472 1.3862944
log(vec1,base=2) #Logarithm of base 2.

[1] 2.584963 3.169925 3.321928 0.000000 3.000000 1.584963 2.807355
[8] 2.321928 1.000000 2.000000
exp(vec1) #Exponential values of a vector (e=2.71...)

[1] 403.428793 8103.083928 22026.465795 2.718282 2980.957987
[6] 20.085537 1096.633158 148.413159 7.389056 54.598150
vec1^2 #Power of 2

[1] 36 81 100 1 64 9 49 25 4 16
sqrt(vec1) #Square root

[1] 2.449490 3.000000 3.162278 1.000000 2.828427 1.732051 2.645751
[8] 2.236068 1.414214 2.000000
vecx <- c(1,3,5,7) #Define another vector
vecy <- c(8,6,4,2) #Define another vector
pmax(vecx,vecy) #Maximum of each corresponding element of two (or more) vectors

[1] 8 6 5 7
pmin(vecx,vecy) #Minimum of each corresponding element of two (or more) vectors

[1] 1 3 4 2
max(vecx,vecy) #Difference between max and pmax

[1] 8
vec1 <- c(-1,0.5,-1.2,4/3)
vec1

[1] -1.000000 0.500000 -1.200000 1.333333
abs(vec1) #Absolute value

[1] 1.000000 0.500000 1.200000 1.333333

10

round(vec1,digits = 1) #Round a value to a number of digits

[1] -1.0 0.5 -1.2 1.3
floor(vec1) #Round down value of vector

[1] -1 0 -2 1
ceiling(vec1) #Round up value of vector

[1] -1 1 -1 2
round(0.5) #Interesting case about rounding. Compare with below.

[1] 0
round(1.5) #Interesting case about rounding. Compare with above.

[1] 2
vec_table<-sample(letters[1:5],20,replace=TRUE) #Another vector for frequency tables. letters is a predefined object in R.
vec_table

[1] "c" "d" "a" "e" "b" "e" "b" "c" "d" "e" "a" "d" "e" "b" "b" "b" "c"
[18] "a" "c" "d"
table(vec_table) #Easily do a frequency table.

vec_table
a b c d e
3 5 4 4 4

Sorting, Ranking and Ordering

vec2 <- sample(x=11:20,size=10,replace=FALSE)
vec2

[1] 18 15 14 17 20 11 13 16 12 19
sort(vec2) #Sort the values in the vector

[1] 11 12 13 14 15 16 17 18 19 20
rank(vec2) #Rank of the values in the vector

[1] 8 5 4 7 10 1 3 6 2 9
order(vec2) #Returns the index values (ascending) of the sorted vector.

[1] 6 9 7 3 2 8 4 1 10 5
order(vec2,decreasing=TRUE) #Returns the index values (descending) of the sorted vector.

[1] 5 10 1 4 8 2 3 7 9 6

Logical operators

These operators return TRUE or FALSE values. They are especially useful to

11

vec1 <- 1:10
vec1

[1] 1 2 3 4 5 6 7 8 9 10
vec1 > 5 #Logical (TRUE/FALSE) result of elements greater than 5.

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
vec1[vec1 > 5]

[1] 6 7 8 9 10
vec1 >= 5 #Logical result of elements greater than or equal to 5.

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
vec1[vec1 >= 5]

[1] 5 6 7 8 9 10
vec1 < 5 #Logical result of elements less than 5.

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
vec1 <= 5 #Logical result of elements less than or equal to 5.

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
vec1 > 5 & vec1 < 9 #and (&) operator

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
vec1[vec1 > 5 & vec1 < 9]

[1] 6 7 8
vec1 < 5 | vec1 > 9 #or (|) operator

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
vec1[vec1 < 5 | vec1 > 9]

[1] 1 2 3 4 10

You can also do element by element comparisons of two vectors.
eu_df<- data.frame(EuStockMarkets[1:20,]) #Take the first 20 rows of the stock market index data
eu_df_returns <- data.frame(DAX=100*(round(eu_df$DAX[-1]/eu_df$DAX[-20],4)-1),

CAC=100*(round(eu_df$CAC[-1]/eu_df$CAC[-20],4)-1)) #Calculate the index percentage returns
eu_df_returns$DAX_or_CAC <- eu_df_returns$DAX >= eu_df_returns$CAC #If the return of DAX is larger than or equal to CAC return TRUE
eu_df_returns

DAX CAC DAX_or_CAC
1 -0.93 -1.26 TRUE
2 -0.44 -1.86 TRUE
3 0.90 -0.58 TRUE
4 -0.18 0.88 FALSE
5 -0.47 -0.51 TRUE
6 1.25 1.18 TRUE
7 0.58 1.32 FALSE
8 -0.29 -0.19 FALSE
9 0.64 0.02 TRUE

12

10 0.12 0.31 FALSE
11 -0.58 -0.24 FALSE
12 -0.51 0.15 FALSE
13 -0.52 -0.03 FALSE
14 0.20 0.34 FALSE
15 0.18 -0.04 TRUE
16 0.27 0.35 FALSE
17 -0.66 0.52 FALSE
18 -0.48 0.11 FALSE
19 -0.52 -0.70 TRUE

Statistics Functions

Some functions are predefined to facilitate statistics calculations.
vec1 <- sample(1:20,50,replace=TRUE) #Sample 50 numbers from values between 1 to 20
vec1

[1] 16 15 13 17 12 11 10 18 10 17 3 10 3 18 3 11 7 10 14 2 8 16 15
[24] 15 11 12 2 8 5 3 20 19 15 5 2 18 1 11 18 7 10 20 14 15 9 18
[47] 10 17 11 10
mean(vec1) #Mean

[1] 11.3
median(vec1) #Median

[1] 11
var(vec1) #Variance

[1] 29.80612
sd(vec1) #Standard deviation

[1] 5.459498
quantile(vec1) #Quantile values

0% 25% 50% 75% 100%
1.00 8.00 11.00 15.75 20.00
quantile(vec1,0.65) #Quantile value of a specific percentage

65%
14.85
summary(vec1) #An aggregate summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 8.00 11.00 11.30 15.75 20.00

There are also random number generators and functions related with densities and cdf’s of different distribu-
tions. Here are the functions for normal distribution.
rnorm(5,mean=0,sd=1) #Generate 5 normally distributed random numbers with mean 0 and sd 1

[1] 0.7729436 -0.3104350 0.7986904 -0.8300605 1.2407001

13

dnorm(x=0,mean=0,sd=1) #Density value of a point in a normal distribution with mean 0 and sd 1

[1] 0.3989423
pnorm(q=1.96,mean=0,sd=1) #Cumulative distribution value of a point in a normal distribution with mean 0 and sd 1

[1] 0.9750021
qnorm(p=0.975,mean=0,sd=1) #Quantile value of a point in a normal distribution with mean 0 and sd 1

[1] 1.959964

Other distributions include dpois (poisson), dbinom (binomial), dgeom (geometric), dunif (uniform), dgamma
(gamma), dexp (exponential), dchisq (chi-squared), dt (t distribution), df (F distribution), dcauchy
(cauchy),dnbinom (negative binomial), dhyper (hypergeometric), dlnorm (lognormal), dbeta (beta), dlogis
(logistic) and dweibull (weibull) with the same format (e.g. rpois generates random poisson numbers).

Random Number Generation

Tip: For reproducibility use set.seed. It will set the randomness seed to a value and random number
generation will be the same for (almost) everyone.
set.seed(522)
rnorm(10)

[1] 0.52028245 0.75354770 -0.80932517 -0.42112173 0.08458416
[6] 1.80153605 1.25071091 -0.31097287 1.16377544 -0.67728655

Let’s run it a second time by resetting the seed. The output will be the same.
set.seed(522)
rnorm(10)

[1] 0.52028245 0.75354770 -0.80932517 -0.42112173 0.08458416
[6] 1.80153605 1.25071091 -0.31097287 1.16377544 -0.67728655

See, the same output happens when randomness seed is restarted at the same value.

Conversion between data and object types

You can convert numeric to character, logical to numeric using functions starting with as. and check the
type of the object with is. or typeof().
vec1<-c(1,2,3,4)
is.numeric(vec1) #Is the vector numeric?

[1] TRUE
as.character(vec1) #Make the vector character?

[1] "1" "2" "3" "4"
typeof(vec1) #What is the type?

[1] "double"
vec2<-c("a","b","c","d")
typeof(vec2)

[1] "character"

14

Tip:**

as.numeric(vec2) # oops

Warning: NAs introduced by coercion

[1] NA NA NA NA
vec3<-c(TRUE,FALSE,TRUE,FALSE)
is.logical(vec3)

[1] TRUE
as.numeric(vec3)

[1] 1 0 1 0
as.character(vec3)

[1] "TRUE" "FALSE" "TRUE" "FALSE"
vec3*1 #Convert to numeric with multiplication

[1] 1 0 1 0
df1<-data.frame(a=c(1,2,3),b=c(4,5,6),c=c(7,8,9))
as.matrix(df1) #Convert to matrix

a b c
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
mat1 <- matrix(1:9,ncol=3)
as.data.frame(mat1)

V1 V2 V3
1 1 4 7
2 2 5 8
3 3 6 9

String Manipulation

strvec1<-c("BDA503","BDA507","IE422")
grep("BDA",strvec1) #Index values of character strings including BDA

[1] 1 2
grepl("BDA",strvec1) #TRUE FALSE statements of character strings including BDA

[1] TRUE TRUE FALSE
gsub("BDA","IE",strvec1) #Replacing strings

[1] "IE503" "IE507" "IE422"
nchar(strvec1) #Return number of characters in string

[1] 6 6 5
substr(strvec1,start=1,stop=2) #Trim the string from start to stop

[1] "BD" "BD" "IE"

15

paste("BDA","503",sep="-") #Concatenate two strings with a separator.

[1] "BDA-503"
paste0("BDA","503") #Concatenate two strings without a separator, equivalent of paste(.,sep="").

[1] "BDA503"
paste(strvec1,collapse="+") #Concatenate elements of a vector with a collapse character.

[1] "BDA503+BDA507+IE422"

Conditionals (If-Else)

Conditionals are straightforward. If a statement returns TRUE, then the code chunk defined by the brackets
are executed.
course_name <- "BDA503" #Define the course name.

if(course_name=="BDA503"){ #If the course name is BDA503.
print("Correct course.")

}

[1] "Correct course."

It is possible to execute some other code chunk if the statement is FALSE with else and add other conditionals
using else if.
course_name <- "BDA507" #Define the course name.

if(course_name=="BDA503"){ #If the course name is BDA503.
print("Correct course.")

}else if(grepl("BDA",course_name)){ #If the course name include BDA but it is not BDA503.
print("Wrong course but close.")

}else{ #If none of the above
print("Wrong course.")

}

[1] "Wrong course but close."

if conditional statements accept only one value. If you want to check for all elements in a vector use
ifelse().
course_name<-c("BDA503","BDA511","IE422")
ifelse(course_name=="BDA503","Correct Course","Wrong Course")

[1] "Correct Course" "Wrong Course" "Wrong Course"

Loops

Although you are warned that R works slowly with loops (especially loops within loops), it is usually inevitable
to use the loops.

For

For loops consist of a loop variable and a scope.

16

val<-2
for(i in 1:3){ #Define the loop variable and scope

print(val^i)
}

[1] 2
[1] 4
[1] 8

Scope does not need to be numbers. For returns whatever in the scope in index order
for(i in c("BDA503","BDA511","IE422")){

print(i)
}

[1] "BDA503"
[1] "BDA511"
[1] "IE422"

While

While is a less frequently used loop type. It repeats the code while a condition is met. It first checks the
condition. When it is not satisfied, it skips the code chunk.
x <- 0
while(x < 3){

x <- x+1
print(paste0("x is ",x," x is not at the desired level. Desired level is above 3."))

}

[1] "x is 1 x is not at the desired level. Desired level is above 3."
[1] "x is 2 x is not at the desired level. Desired level is above 3."
[1] "x is 3 x is not at the desired level. Desired level is above 3."

Functions

R lets you to define functions easily, with a flexible format. Here are some examples.
fun1<-function(par1="This is a default value"){

print(par1)
}

If there is a default value defined on the function you do not need to enter any value if you are comfortable
with.
fun1()

[1] "This is a default value"

You can change the parameters when you call the function.
fun1(par1="Congratulations, you changed the parameter.")

[1] "Congratulations, you changed the parameter."

If you are careful about the order of your entered parameters, you do not need to write the parameter name.

17

fun1("Wow you do it like a pro without parameter names!")

[1] "Wow you do it like a pro without parameter names!"

Here is another simple example. Let’s calculate the future value of an initial investment compounded interest.
calc_future_value<-function(present_value,interest_rate,years){

return(present_value*(1+interest_rate)^years)
}
calc_future_value(100,0.05,5)

[1] 127.6282

Put a technical analysis.

Input Output (I/O) Operations

Reading from and writing to data files will be unavoidable at some point. While it is useful to know the
fundamental functions, I/O operations usually require experience. In other words, you will face many
challenges to read a table from an excel file or writing outputs to txt files. Though, it gets easier

Frequently use the help of these functions to understand their inner workings. For xlsx files and other data
types (e.g. JSON, SQL) there are packages.
setwd("~/some_path") #Set working directory path.
getwd() #Get the working directory path.
scan(file="some_data_file.txt") #Read data from file.
read.table(file="some_data_file.csv") #Read xls or csv files but not xlsx files. You will need a package for that.
source("path_to_some_r_file/some_r_file.r")
write("writing_something",file="some_document_file.txt")
write.table() #Writing to csv or xls. Similar logic to to read.table with opposite function.
file.choose() #Manually choosing a file from computer. You can use it like read.table(file.choose())
dir(path="some_path") #Files in the path directory.

Important: Defining paths in R can be different in Windows and Mac. See this link for more detail.
dir("C:/Desktop/") #Windows style 1
dir("C:\\Desktop\\") #Windows style 2
dir("~/Documents/") #Mac and Linux style. Might work for Windows too.

Tip: Sometimes, R reads columns containing characters as factor data type. It is not covered in this tutorial
and it is tough to handle and convert. Therefore using the following code will prevent R to read character
strings as factors.
options(stringsAsFactors=FALSE)

If your character vector is read as a factor, use as.character() function. If your numeric vector is read as a
factor, use as.numeric(as.character()) function. Examples are given below.
factvec<-factor(c("a","b","c","a")) #Factor data vector
factvec
as.character(factvec) #Convert to character
factvec2<-factor(c(10,20,30,40,10)) #Factor data vector with numbers only
factvec2
as.numeric(factvec2) #If you want to convert directly to numeric, output will not be desirable.
as.numeric(as.character(factvec2))

18

https://cran.r-project.org/bin/windows/base/rw-FAQ.html#What-are-HOME-and-working-directories_003f

RData

RData is a special data file type used by R. It is quite useful and efficient to store (better than csv). One
disadvantage is it is not as common as csv, so reading RData outside R is a challenge.
load(path="some_RData")
save(some_data_frame,file="some_file.RData")

Packages

Packages are the most important asset class of R. These last years have seen a rapid expansion of R packages
for almost any topic of interest that need computation. There are two steps to use a package; to install and
to load.
install.packages("package_name") #Install command
library(package_name) #Load the package require() also works. No quotes!

Remember: You need to install a package only once. It is downloaded and ready to use whenever you load
the package with library(). Packages are updated from time to time. To update your installed packages,
use update.packages() command.

Below displays an example of a package use from the start. You will see how it is done in base R and how it
can be enhanced with the packages.

Plotting

Plotting in R can be a bit problematic and hard. Let’s plot the returns of stock indexes of the previous
EuStockMarkets data.
#Let's redo what we did previously.
eu_df<- data.frame(EuStockMarkets[1:20,]) #Take the first 20 rows of the stock market index data
eu_df_returns <- data.frame(DAX=100*(round(eu_df$DAX[-1]/eu_df$DAX[-20],4)-1),

CAC=100*(round(eu_df$CAC[-1]/eu_df$CAC[-20],4)-1)) #Calculate the index percentage returns
eu_df_returns

DAX CAC
1 -0.93 -1.26
2 -0.44 -1.86
3 0.90 -0.58
4 -0.18 0.88
5 -0.47 -0.51
6 1.25 1.18
7 0.58 1.32
8 -0.29 -0.19
9 0.64 0.02
10 0.12 0.31
11 -0.58 -0.24
12 -0.51 0.15
13 -0.52 -0.03
14 0.20 0.34
15 0.18 -0.04
16 0.27 0.35
17 -0.66 0.52
18 -0.48 0.11
19 -0.52 -0.70

19

Base R plotting is as following.
plot(x=1:nrow(eu_df_returns),

y=eu_df_returns$DAX,
type="l",col="red",
ylim=c(min(unlist(eu_df_returns)),max(unlist(eu_df_returns))),
ylab="Returns (%)",
xlab="Time Index")

lines(eu_df_returns$CAC)

5 10 15

−
1.

5
−

0.
5

0.
5

1.
0

Time Index

R
et

ur
ns

 (
%

)

You can probably do better with ggplot2 package. It has more beautiful aesthetics, more readable code and
better options. Even with the default values your plots will look better. Here is a simple implementation of
the previous example.
if(!("ggplot2" %in% rownames(installed.packages()))){

install.packages("ggplot2") #Install the package (you can skip it if it is already installed)
}
library(ggplot2)
ggplot(data=eu_df_returns,aes(x=1:nrow(eu_df_returns))) +
geom_line(aes(y=DAX,color="DAX")) +
geom_line(aes(y=CAC,color="CAC")) +
labs(x="Time Index",y="Returns (%)")

20

−2

−1

0

1

5 10 15

Time Index

R
et

ur
ns

 (
%

)

colour

CAC

DAX

Recommendations

R is quite extensive and the best ways to quickly learn are to write as much code as possible (this is the
boring advice) and expose yourself to information by subscribing to newsletters, following related Twitter
accounts and Facebook pages. Some prominently beneficial sources are given below.

R CRAN Task View: Curated lists of packages categorized on the purpose of use. They have categories such
as Finance, Time Series and Econometrics. It is a good way to start searching for packages.

Stackexchange: Programmer’s best friend. It is the umbrella site for highly technical Q&A sites such as Stack
Overflow (for general programming), Cross Validated (statistics and data science) and Quantitative Finance.
You can ask your programming problems here by providing an MWE (minimal working example)

Kaggle: There are many data science tasks, data sets and codes in here. Known for data competitions.

Quandl: Vast collection of data sets mainly on economics and finance. Great R support (even has a package).

GitHub: Most popular online code repository for git5 based projects. Plus, putting R packages on GitHub
prior to release on CRAN is a popular practice (advanced topic).

Coursera: Online learning at its best. There are many good quality quantitative finance, R and data science
courses in here.

R-bloggers: Very useful site about R. I personally recommend subscribing to their newsletter and following
their Twitter and Facebook accounts.

R-SIG-FIN: A mail group about R and Finance. A bit outdated but you can still search the archives.
5Git is a version controlling system mainly for software development but basically for any project. It mainly replaces the

practice of code_finalfinalfinal.r and finalreport_lastlastlastthisisthelastipromise.docx

21

https://cran.r-project.org/web/views/
http://stackexchange.com/
http://stackoverflow.com/
http://stackoverflow.com/
http://stats.stackexchange.com/
http://quant.stackexchange.com/
http://kaggle.com/
http://quandl.com/
https://github.com/
https://www.coursera.org/
https://www.r-bloggers.com
https://stat.ethz.ch/mailman/listinfo/r-sig-finance

ROpenSci: An organization promoting reproducible research with R. They have many good packages also.

R Cheat Sheets

There are many code cheat sheets on the internet. Here are some. I will update the list with new additions.

RStudio Cheat Sheets: Cheat sheets on base R, plotting and some very useful packages (i.e. dplyr, ggplot2,
shiny, rmarkdown).

Data Management

Quandl Cheat Sheet: A cheat sheet by Quandl. There are also tips to use the quandl package.

R Reference Card: This one is from official R site.

Google’s R Style Guide: This is more about styling your code. Best practices for readability.

Past Versions

This document is essentially an updated version of BOUN-FE522 lecture notes. See the original here.

22

http://ropensci.org/
https://www.rstudio.com/resources/cheatsheets/
https://sites.ualberta.ca/~ahamann/teaching/renr690/R_Cheat_Data.pdf
https://s3.amazonaws.com/quandl-static-content/Documents/Quandl+-+R+Cheat+Sheet.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://google.github.io/styleguide/Rguide.xml
https://berkorbay.github.io/fe522/01_R_Basics.html

	Briefly About R
	Getting Ready
	R 101
	Value Assignment, Vectors and Data Types
	Object Types
	Vector
	Matrix
	Data Frame
	List

	Useful Base R Functions
	Sorting, Ranking and Ordering
	Logical operators
	Statistics Functions
	Conversion between data and object types
	String Manipulation

	Conditionals (If-Else)
	Loops
	For
	While

	Functions
	Input Output (I/O) Operations
	RData

	Packages
	Plotting

	Recommendations
	R Cheat Sheets
	Past Versions

